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Abstract. A review is given of some NMR techniques developed in experiments on
high-temperature superconductors. Multiexpohential relaxation which appears in the T3
measurements when NMR lines are split by qeadrupole interactions is discussed for the
case of magnetic relaxation. The change in the form of refaxation is followed as the
quadrupole Hamiltonjan starts to perturb the otherwise pure Zeeman spin states (defined
by I;). Orthorhombic symmetry is assumed in the analysis, which is shown to greatly
simplify the dala reduction to obtain the magnetic hyperfine shift, the electric field
gradient and the nuclear spin-lattice relaxation rate.

1. Introduction

Nuclear spins larger than 1/2 have non-zero electric quadrupole moments which inter-
act with the electric field gradient (EFG) if it is present at the position of the nucleus.
By NMR one can measuie the EFG tensor (1] and use it as important information about
the system under investigation. However, the technique of the NMR data reduction
to obtain the magnetic hyperfine shift (MHS) (which is called the Knight shift in met-
als), the EFG and the nuclear spin-lattice relaxation rate (NSLRR) can be considerably
more difficult than in the case of spin 1/2 or zero EFG. Recent examples are given by
a Jarge number of NMR resulis on high-temperature superconductors (HTSC) [2] and
notably in YBCO compound for copper #3:6°Cu spin 3/2 nuclei [3-6) and oxygen 7O
spin 5/2 nuclei [7-9]. Fortunately, in orthorhombic crystals, for NMR sites having local
symmetry mm?2, the principal axes of the MHS and EFG tensors have to be paraliel to
the crystal axes, which greatly simplifies the NMR measurements and data analysis. In
this paper we focus on these ‘technical details’ (usually taken into account implicitly in
most of the NMR publications) underlying the NMR work in orthorhombic compounds
in the presence of strong quadrupole coupling to the EFG [10]. The central point is
the detailed discussion (given in section 3) of the multiexponential relaxation in the
NSLRR measurements, which has proved to be of prime importance in experimental
work and can possibly lead to serious systematic errors. The basis of thc analysis
is the orthorhombic symmetry of the samples and the local symmetry mm2, and in
section 2 we will also explore to some extent the simplifications and technical details
based on this symmetry, which have been developed in the course of investigation of
3Cu and 'O NMR in HTSC.
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2. Magnetic hyperfine shift and electric field gradient

Both the EFG and the MHS tensors are symmetric and in orthorhombic crystals one
would naturally like to have the principal axes of these teénsors simply parallel to the
crystal axes. However, it turns out that, in general, the local symmetry at a particular
NMR site in an orthorhombic crystal may not be high enough to ensure this parallelism
automatically. One sufficient condition is the local symmetry mm2, ie. it is enough
to find at least two of the three crystal planes (a-b, b—c and c—-a) passing through
the position of the nucleus to be the planes of mirror symmetry. By symmetry, for
each of these two planes there is a principal axis that has to be perpendicular to
the plane, which is enough to fix the coordinate system of principal axes parallel to
the crystal axes. The given criterion is very simple and it is easy to verify that it is
fulfilled e.g. for all the nuclei in YBCO HTsC. This is 2 fundamental simplification, as
in general the number of unknown parameters is reduced by two times three Euler
angles (which would otherwise be necessary to specify the position of the coordinate
system of principal axes) corresponding to the MHS and EFG tensors. In this case, for
the Hamiltonian A which determines the energy levels of nuclear spins and thus the
positions of the NMR lines, we can simply use the coordinate system of crystal axes
in which all tensors are diagonal:

H= 'Hz%man + HQuadrupole
HZeeman = z _h'Yn(l + 'KAA)HO-*‘ IA (1)

A=a,b.c

HQuadrupole = hyzz [313 - I(I + 1) + "7;([3- + IE)/Z] /6

where n, = (vg, — v, )/v,,, =, y, » correspond to any combination of the a,
b, ¢ axes with no restrictions, and otherwise standard notation [1] has been used,
We recall here that frequencies v, , are proportional to the EFG V,, : v, , =
3eQ/[2hI(2] — 1)]V,4 4 [1]. According to Poisson’s equation, the EFG tensor has
zero trace and in the quadrupole Hamiltonian it is therefore represented by only two
parameters v,, and #,.

Altogether, the Hamiltonian contains as many as five unknown parameters which
- fully determine the MHs and EFG tensors, and it is explicitly dependent on the orien-
tation of the external magnetic field H,. The logical choice is to orient H|, parallel
to one of the crystal axes and in the following we will take this axis to be z-axis, ie.
H; = Hyk. In the Hamiltonian (1) the Zeeman part is simplified,

M= —hy, (14 K, )Hol 4+ kv, 312 = I(1+ 1) + 0,13 + 12)/2] /6 3

and only three parameters K, ,, v,, and n, are left over. These can be determined
from only three lines of the corresponding NMR spectrum so only one complete
spectrum (ie. for one orientation of the sample) for spin > 3/2 is required to
provide the complete EFG tensor (plus one component of MHS). This fact proved to
be fundamental in the NMR investigation of YBa,Cu,0O, HTSC, where the symmetry
of the EFG tensor has been used as the decisive argument to solve the long-lasting
controversy in the site assignment of two copper lines [3, 4]. Although the symmetry of
the MHS tensor can be used for the same purpose, in principle we need measurements
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for three different orientations of the sample for its determination while the use of
EFG is much simpler as only one spectrum is needed.

Figure 1 shows an example (corresponding to copper resonance in copper-oxide
H1sC) where the line positions of spin 3/2 are obtained from the exact solution of
Hamiltonian (1) for H, parallel to any of the principal axes X, ¥ and Z{. In
order to emphasize the dependence of the line positions on the symmetry of the
EFG tensor, in figure 1 the MHS has been absorbed in the ‘total’ magnetic field,

= (1 + K4 ,)H,. The NQR frequency vygr = vzz(1+ n%/3)*/2 has been kept
constant, which corresponds to the actual experimental situation with copper NMR
in YBa,Cu;O,, where this parameter had been known from pure NQR before the
determination of the complete EFG tensor. Using the symmetry properties of the
Hamiltonian (1) under the exchange of the principal axes, it can be shown that in
the representation of figure 1 the line positions (as a function of n and orientation)
are given by continuous smooth lines, regardless of the spin value. For H, parallel
to the Z-axis and 5 = 0, the NMR lines are equally spaced out at intervals equal to
v and with the central line [for half-integer spins, transition (1/2, —1/2)] at exactly
Yo H /27, ie. not shifted by the quadrupole coupling. For all other cases, as we
move upwards along the vertical axis of figure 1, the intervals between the lines
decrease monotonically and they are no longer equal; the higher-frequency interval is
somewhat smaller than its lower-frequency neighbour. The central line is shifted by
the quadrupole coupling to a higher frequency. From such dependence it is evident
that the EFG parameters are uniquely determined by the line positions. To be more
precise, one can determine ~,, (up to its sign) and 7,, and from these calculate v_,
and v, . However, for two crystal axes perpendlcular to the z-axis one cannot tell
which one is z- and which one is y-axis.

In the following we discuss in more detail our choice of H,, as being parallel to one
of the crystal axes, which underlies our analysis of the NMR spectrum. Experimentally
there are two possible ways to ensure this condition: one is to take a single crystal
and orient it appropriately; e.g. copper oxide HTSC single crystals are platelets with
the c-axis pcrpendicular to the platelet. Another possibility is to make a so-called

t The convention |vzz| < |vyy| < [vzz| = vg restricling 7z = 7 to the interval 0 < p < 1 is
customary, but not necessary, When this convention js assumed we will use capital letters X, Y and Z.
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‘oriented powder’ where all grains in the powder are small single crystals oriented
with e.g. their c-axes parallel to the external field, while the orientation of two
perpendicular axes a and b is random. It turns out that for most HISC the anisotropy
of magnetic susceptibility at T > T, favours alignment of the c-axis parallel to the
external magnetic field and it is relatively easy to perform the orientation in situ in
the H, field. For H, parallel to the oriented axis (which is automatically obtained
by orientation in sitz), the same Hamiltonian describes each grain and the whole
sample is indistinguishable from a true single crystal, as far as the NMR is concerned.
The resulting spectrum consists of lines, and according to the previous discussion it
is sufficient for the full determination of the EFG.

Note that as soon as we put H perpendicular to the oriented axis of an oriented
powder (which we can call a ‘two-dimensional powder’), or in the case of non-oriented
(‘three dimensional’y powder, the spectrum will correspond to the directional average
over all possible directions of H|, with respect to the crystal axes of each grain in the
sample. Instead of lines, one obtains the distribution, and instead of line positions,
in the determination of parameters one has to refer to ‘van Hove’ singularities in the
spectrum. In this case the determination of parameters (if possible at all) is more
difficult and less reliable. It is clear that the ‘two-dimensional’ (oriented) powder is
preferred to the ‘three-dimensional’ powder as, due to lower dimension, van Hove
singuiarities are sharper and the number of parameters describing the spectrum is
smaller.

3. Nuclear spin-lattice relaxation

The theory of the multiexponential relaxation of spin I > 1/2 induced by the pres-
ence of quadrupole coupling was treated previously by Andrew and Tunstall {11] and
Narath [12]. In recent measurements of copper and oxygen NSLRR in HTSC, this the-
ory has been applied to obtain the explicit expressions for the relaxation of different
lines of spin 3/2 and 5/2 spectra [4, 8]. These expressions correspond to refaxation
of magnetic origin in the case when Zecman spin states (ie. the eigenstates of I,)
are only negligibly perturbcd by the quadrupole coupling. The latter condition is
fulfilled when the asymmetry of the quadrupole coupling with respect to the direction
of magnetic field (z-axis) is much smaller than the Zeeman interaction:

huzznz <!‘:“‘Y-rr.‘HO' (3)

Condition (3) ensures that the off-diagonal elements in Hamiltonian (2) be much
smaller than the diagonal ones. Trivially, this can be ensured when the quadrupole
coupling v,, is small, which is, e.g. the case of 17O NMR in HTsC. This can also be
true for strong quadrupole coupling and for the direction of the symmetry axis of
the EFG tensor (for n, < 1), which is just the case of copper in CuC, planes of
HTSC, when H, is parallel to the c-axis. For the same nucleus and H,, perpendicular
to the c-axis, condition (3) is not fulfilled and more complicated analysis is needed
in the determination of the relaxation rate. An analysis of this type appeared only
very recently in connection with the low-field copper NMR [6], however, even in the
high-field NMR these effects cannot be neglected. Similar analysis has also been given
by Chepin and Ross [13] in the general treatment of pure NQR, i.e. in the case of zero
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magnetic field. In the following, together with the most general treatment of multi-
exponential relaxation, we present a detailed discussion of conditions corresponding
to each type of fit, and cover all the cases from high to low magnetic field.

For the sake of compieteness and generality, in appendix A we give the explicit
expression for the time development of the energy level populations n;, given the
arbitrary probability of transition W; from level j to level 4, and arbitrary initial
conditions. The assumption underlying this approach is that the spin—spin interactions
ensure that the population of energy levels of each nuclear spin can be treated
statistically and described by the lincar rate equation. Note that the solution of the
linear rate equation given in appendix A is quite general regardless of the origin
and size of the transition probabilities. The only NMR-specific detail in this solution
is the standard choice of the variable [11, 12] which is taken to be the difference
of populations of neighbouring energy levels An; = n; — n;,,, as this quantity is
directly proportional to the NMR signal. The transformation to the An; variables
is given in matrix notation [14]—which is a great advantage, enabling direct and
simple conversion of the procedure into a computer program capable of handling any
particniar case. Note that in [6, 13] the transformation has been avoided and the rate
equation solved directly, leading to the appearance of a2 redundant eigenvector in the
solution,

As the next step we discuss the initial condition corresponding to a particular
experimental procedure. We consider the standard x—i-n /2—r—r pulse sequence for
the NSLRR measurements, where the excitation is performed by one short pulse at
t = 0, exciting e.g. the (m + 1, m) line. This pulse is supposed to be the only source
of variation of [An,(t = 0) — An,(? = 0o}, i.e. it has t0 be short enough for the
relaxation during the pulse to be negligible. (Note that this might not be true for the
excitation by a pulse sequence.) The spectral width of the excitation pulse has to be
wide enough to cover the line completely, but also narrow enough to avoid ‘touching’
neighbouring lines. Under these conditions one has a well defined initial condition:

[n(0) — np(oe)] & 3(6r 0 = 64 1)
ie.
[An (0) — Any(o0)] & 6 1, — 5(Sk,mir + Sk i) (4)

where &, is the Kronecker delta (ie. 6, = 0 for £ # m and &, =1 for
k = m). Note that a similar expression can also cover the case in which the NMR
line corresponds to a transition between any two levels, and not only neighbouring
ones,

The final fundamental ingredient which remains to be specified in our description
of relaxation is of course the transition probability W;;. We recall that from the first-
order perturbation for the equation of motion of the density matrix [1], the probability
of transition between localized energy levels |k} — |m}, for a perturbation that is
spread in frequency, is given by the w, ;. [w,,r = (E,, — E, )/h] Fourier component
of the interaction Hamiltonian correlation function:

+ o0
Wi =57 [ dt explivont [l OWTEL O, )

—oa
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In this paper we discuss only the relaxation of ‘magnetic origin’, i.e. the interaction
Hamiltonian to be inserted in (5) is

Hy = ~hy, T h(t) ®)

where h(t) is the fluctuating part of the local magnetic field (with zero time average).
From (5, 6) it is clear that

+co o .
uAB(w} = T’zl f dtelw:hA(t)hB(O) A., B =T, Y2, +1 - - (7)

-0

will be the fundamental quantities in the transition probabilities. As a reference, we
start with the spin 1/2 case with a single transition and no quadrupole coupling. Even
in this case we can apply the procedure of appendix A to obtain single-exponential
relaxation with time constant 7, given by

Tfl = W:/z,-uz + W—1/2,1/2- (8
From (5-8),

Tl-l(‘-'-’u) = u_+(—wo) + 2y (wy)
= Jz'; {{ux:(wﬂ) + uyy(wﬂ)] - i[u:y(wﬂ) - uy:r(wl])]} (9)

where w, is the NMR resonance frequency. (Note some relevant symmetry properties
of the correlation function (7): for A, B = z,y, 2, uyp — ug, is imaginary and
odd, while u, 4 and u 45 + ug 4 are real and even functions of w.) As the next step
we consider the arbitrary spin in the presence of a weak quadrupole coupling which
leaves the Zeeman spin states (almost) unperturbed. In this case only I, I_ and
I_ I, combinations will provide non-zero contribution in the transition probabilities,

Wi = 3 T7 (@i )IimI TF 18

2 4 [(ml 2= |B)]?) (10)

where 771 (w) is defined by (9). For weak quadrupole coupling, all transition fre-
quencies are rather close, so that we can neglect the frequency dependence of T},

T Hwpy) = T7 Hw) (11)

and in the transition probabilities (10} only one parameter (namely T}) is left over—
the same as defined in the ‘reference’ spin 1/2 case. Using (10), {11) and the initial
condition (4) in the procedure given in appendix A, it is a simple matter to obtain
the time dependence in the relaxation experiment for an arbitrary spin. The spin
3/2 and 52 curves obtained in this way (which are much used in the investigation
of 53Cu and 'O NMR in HTSC) arc given in table 1. Figute 2 shows an example
of the fit to the spin 5/2 curve, corresponding to the relaxation of plane oxygen in
YBCO HTSC [9]. Note that the same analysis and the same curves are valid even for
strong coupling with only weak asymmetry (3), under the condition that Ty '(w) is
frequency-independent in the frequency range where the NMR lines are observed. An
example is provided by the relaxation of plane copper in YBCO, when H| is parallel to
the c-axis. Frequency independence of u , g(w} correlation functions (7) is actually
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Figure 2. Theoretical fit (table 1) and the relaxation data used for the determination
of T1 of the plane oxygen in YBCO, measured on (3/2, 172} low-frequency sateliite in
the He¢ || X -axis configuration, at 100 K [9]. The same data are shown in the standard
linear-log plot and in the experimentally more appropriate log-linear plot.

expected to be fulfilled in most cases, as the correlation times of the magnetic ficld
fluctuations are very short on the time scale defined by the NMR frequency (p 194 of
[1]). Note that here we speak of the frequency independence of T for given external
magnetic field H,;, but at the same time T, may very well depend on H, reflecting
the influence of magnetic field on the system; the two variables, ie. magnetic field
and frequency, have here different meanings which must not be confused.

So far, we have only repeated the analysis of Andrew and Tunstall [11] and Narath
[12] in a way appropriate for the extension to the most general case. Now, if the
Zeeman states are significantly mixed by the asymmetry of quadrupole coupling, in
principle all the combinations f, Iz will appear when the interaction Hamiltonian
(6) is inserted in the expression for the transition probability (5). To simplify the
expression, we consider only the case where H is paralle! to one of the principal
axes. Hamiltonian (2) can then be used for the description, and the only off-diagonal
elements in"the Hamiltonian are generated by IZ and I? operators. Consequently,
only Zeeman states with A M = +2 will be mixed together. (We also remark that in
this case the Hamiltonian (2) and therefore ail the spin states and ail relevant matrix
elements are real, which simplifies numerical treatment.) It is easy to see that in the
transition probability only the I_J, or [/, combinations give zero contribution and
the complete expression is given by:

Wk = 3 {{%e0 + 2y, ] +i{uey —upel} 3(mlL, [R)?

+ 3 {{ttes + gy ] ~ilugy ~ uy, ]} H(mlI_|k)?

+ §lusg — uy miLy [R){EIL, [m) + w,, (m], [k)? (12)
where all the correlation functions u,p are to be taken at the frequency of the
transition w = w,,;, states |m) and |k} now refer to real spin states obtained from

the solution of the Hamiltonian (2) and the matrix elements are explicitly taken to be
real. In the discussion of this result we will suppose that the cross-correlation term
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[ty — Uy 5] is zero (p 207 of [1]) and that al} the correlation functions are frequency
independent. This will reduce the number of parameters appearing in (12) to three
(Ugqs Uy, and u_.), which can be converted to the above discussed relaxation rates
(9) measured in the three directions of the principal axes, ie.

Wi = Ty(2) ™! [ml L, [k)? + (m]I_|k)%)
+{T(w) ™ = (@) Ti(2)7 ) (L k) (kT m)
+{[T(e)™" + Ty (=)™ /Ty(2) 7" = 1 H{mlL k)] . (13)

Formally, (13) puts us in a rather unfavourable situation where the complete relaxa-
tion rate tensor has to be known in advance in order to find out the exact form of
the relaxation curve necessary for its determination. The only way out is the iterative
self-consistent determination of T)(x,y,z). Comparing (13) to (10) we notice that
the new terms are linear (I 1) or quadratic (/,1,) in the quadrupocle perturbation
(or of a higher order). In the first approximation we can therefore rely on the above
discussed case of pure Zeeman states and the known ‘standard’ relaxation curves (see
table 1) to provide the first estimate of the anisotropies T} (z,y)~1/7T,(z)~! which
are needed in expression (13). We then start an iterative procedure where previously
approximated values of T are used in the part of expression (13) in braces in order
to define new transition probabilities and new relaxation curves which are then used
to obtain the subsequent approximation of T,—until the values converge.

Table 1. Magnetic relaxation in T; measurements, when quadrupole coupling splits the
NMR lines but leaves the Zeeman spin states (almost) unperturbed.

Spin  Transition Flz)= F(¢/Th); F{0)=1

SR (<1/2,41/2) et P S P
35 -] 3

(:F3lf21¥1/2} élge_x + :5_352—3; + ilae—s: + ‘é_g,e—lo:r 4 g%e—ls.x
(;5/21;3/2) Loz + 1—:','4'8—'3: + %e—Gx + %E—IO: + ili-e—ds:

32 (-1/2,+1/2) e + Semes
(F3/2,F1/2) He "+ Ledr 4 Lo-ts

In the foliowing, as an example, we discuss the results of Cu resonance in CuO,
planes of YBCO HTSC. The situation is considerably simpler herc because of the
tetragonal symmetry, This means that for H || c-axis the simpler analysis based
on (10) and the curves for spin 3/2 given in table 1 are valid exactly, provided
that T, is not frequency dependent. The general analysis applies only to the de-
termination of T)(a) = T,(b), ie. to the determination of the NSLRR anisotropy
R = Ty(a,b)"*/T,(c)~*. For the a or b direction, the parameters in the Hamilto-
nian (2) are v, = —r /2 and 5, = %3, and the corresponding transition probabili-
ties are given by

Wk = Ti(a,0)™H {3((mi L1k + (m]|I_{k)*)
£ (1/R—1){m|L ]k} (k|1 [m} + (1/ RYm|L, |k)*} . (14)

This expression has been used to show how the relaxation curve is modified by the
quadrupole perturbation of spin states; in table 2 the explicit expressions are given
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which correspond to the transition (3/2, 1/2) of plane copper in YBa,Cu,O, and
various values of the magnetic field used in the investigations [5, 6, 9]. It is obvious
that for v Hy < v one obtains substantial changes in the relaxation curve, and even
at high fields, yH, > vg, this effect cannot be neglected. To get a feeling how
the deviation develops as we lower the magnetic field, one can compare the true
relaxation curve and the ‘standard curve’ (i.e. the one corresponding to H; — oo)
which is time scaled in order to minimize the difference between these two curves. In
this case the time scaling factor will measure the error due to using the standard curve
instead of the real one. An example of these corrections is given in table 3 and in
figure 3, with the minimization of the absolute value of the maximal difference as the
matching criterion. It is clear that, while being rather smail for the central line (172,
—1/2), these corrections are quite important for the satellite lines. Unfortunately,
even for corrections of, say, 20%, the experiment will be completely unable to detect
the change in the shape of the relaxation curve; figure 3 shows that by using time
scaling the corresponding deviations can be reduced to less than 0.7% of the total
variation of the signal, which is usually completely covered by noise.

Figure 3. Time dependence of the difference
AF between the real curve and the time-scaled
‘standard’ relaxation curve, corresponding to the
Hg = 5.75 T case of table 3 for the (a) low, (b)
central and (¢) high frequency lines. All curves are
normaiized to F(t= 0) = 1.

Note that in principle the above time-scajing procedure can be used to correct
the data obtained by the formal use of the standard curves given in table 1. However,
depending on the fit of the experimental data and the exact matching criterion used
in the scaling, it is easy to introduce systematic errors in this correction. In fits it is
always preferable to use the exact curve directly without further corrections.

We return to the discussion of the frequency independence of the relaxation rate
(%), which enables us to define the single parameter 7} describing multiexponential
relaxation. We already mentioned that deviations from frequency independence are
not likely to be encountered. Nevertheless, they are discussed here as the natural
generalization of the previous analysis leading to the most general case of ‘arbitrary’
transition probabilities (which include quadrupole relaxation). The main point is
that one is able to detect experimentally the possible deviations from the frequency-
independent T, (and/or from magnetic relaxation); first we look for the possible
differences between the theoretical and experimental form of the relaxation. Although
this depends on the noise in the experiment, we already saw in figure 3 that there is a
fair chance that the possible change in the form of the curve can be absorbed in the
time-scaling factor and consequently in the false 77 value. It is therefore necessary
to check whether the same relaxation rate is obtained in measurements on different
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Table 2. Magnetic ticld dependence of the (coefficients defining) relaxation curves
F(t/T)} = ¥} ; a;exp(=b,t/T)} corresponding to the plane copper resonance in
YBayCusO7 for Ho perpendicular to the symmetry axis, tramnsition (3/2, 1/2), vg =
31.48 MHz and NSLRR anisotropy R = 3.73 [5]. The second column contains the
reference in which the given value of Fy has been used in the measurenients,

Ho(T) Rel. ay by az bz a3 by
0.44 6] 000003 802 0969 195 0031 0825
088 6} 00010 752 0898 233 0101 0.869
22 — 0069 621 0747 313 0184 0953
575 9] 0264 598 058 307 O0.IS1 0991
8.1 [5] 0304 599 0559 304 0137 0995
o 0.4 6 05 3 o1 I

NMR lines of the same spectrum [3, 8]. Note that ‘looking’ at each line, one finds its
relaxation curve predominantly determined by the transition probability corresponding
to this line. (This plausible statement can easily be supported numerically if we
look at the changes in the relaxation curve when different transition probabilities
are forced ‘by hand’ to deviate from the standard case of (10).) Any frequency
dependence will thus be directly observable. Moreover, once the relaxation has been
measured for all the lines, it is in principle possible to deduce exactly all the values
T(w,,;) corresponding to each line, ie. in this way one can directly measure the
frequency dependence of NSLRR. The determination will be iterative, similar to the
above discussed determination of 77 using (13), where once again the starting values
will be taken from the standard analysis. Of course, if {10) is valid for the chosen
crystal axis, this procedure can be carried out independently for this direction. In
principle, even the most general case based on (12) is solvable; however, this demands
the simultaneous knowledge of relaxation for all the lines, for all the crystal axes.
In the most general case we will actually determine afl the transition probabilities
irrespective of their values. Thus, even the resiriction to magnetic relaxation (6) is no
longer necessary. However, it is clear that this implies a rather demanding quantity
of experimental information.

Table 3.  Time-scaling coeflicients & which minimize the difference AF =
[F{Ho,t/T1) = F(Hg = oo, kt/T1)] between the real curve (see table 2) and the
lime-scaled ‘standard’ relaxation curve (see table 1 for spin 3/2). The coefficients &
measure the ervor in the determination of 77 when ‘standard’ curve is used instead of

the real one,

Ho(T) s7s &1 -

Reference {QjW 7[5]- " I
Low freq. satellite 1.198 1133

Central line 0962 0.981

High freq, satellite 0.868 @.901

As regards the most general case, we recal]l that when different isotopes of the
same nucleus are available, as e.g. for copper #3Cu and %*Cu, the measurement of
the ratio of NSLRR of two different isotopes can be compared to the ratio of squared
nuclear gyromagnetic ratios or quadrupole moments in order to deduce the origin of
nuclear relaxation, as has been done, e.g. in [6]. If this is not possible, (e.g. in the case
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of !7O NMR) one should rely on the analysis of the relaxation curves for different lines
of the same spectrum, as in the case where the possibility of frequency-dependent T
has been discussed.

4. Conclusion

For nuclear spins greater than 1/2 the quadrupole coupling splits the NMR line and
makes the determination of characteristic tensors, i.e. the MHS, EFG and NSLRR ten-
sors, more difficult. Orthorhombic symmetry and the local symmetry mm2 can
considerably simplify this determination; in the coordinate system of crystal axes the
tensors are then diagonal and we show that the choice of orientation with the ex-
ternal field H, parallel to one of the crystal axes is particularly advantageous in
the measurements. In this case only one complete spectrum is needed for the full
determination of the EFG tensor,

In the measurements of NSLRR (7)"') the existence of several NMR lines in the
spectrum of one nucleus will imply multiexponential relaxation. In appendix A a
general procedure is given which predicts the form of relaxation for any set of tran-
sition probabilities and initial conditions. In fact, one would like to have the ‘inverse
procedure’ which would calculate the transition probabilities from the experimentally
determined form of relaxation. In principle, if the relaxation form is known for all
the NMR lines, one can determine the transition probabilities using the procedure as
given in appendix A in an iteration, until the seif-consistent solution is found. We are
primarily interested in the case where only one parameter determines the transition
probabilities: for the relaxation of magnetic origin this parameter is defined in the
trivial case of spin 1/2 where the relaxation is single-exponential with the time constant
T, measuring the transverse fluctuations of magnetic field (at the NMR frequency) ac-
cording to (9) and (7). For spins greater than 1/2 the same parameter is still the only
one which determines the transition probabilities according to (10), if the Zeeman
spin states are left (almost) unperturbed by the quadrupole coupling, and if T) does
not depend on the frequency of the transition. In this case the simple application of
the procedure given in appendix A gives ‘standard’ multiexponentiai relaxation curves
(which depend only on the spin value and on the chosen transition—examples are
given in table 1) and one measurement of relaxation (on any one of the lines) is
sufficient for the determination of T} for the chosen orientation of H.

However, if the Zeeman spin states are significantly mixed by the quadrupole
coupling, while the frequency independence of T, parameters (9), (7) is still valid,
transition probabilities are defined by three parameters which can be reduced to
the definitions of 7} (9), (7) for three directions of crystal axes a, & and ¢. For
the determination of these, one needs one relaxation measurement for each of the
three orientations of the sample. There are no more ‘standard’ relaxation curves,
as they are specific to each case and have to be determined self-consistently for all
three orientations (e.g. see table 2). In this paper we were especially interested in
considering how a small quadrupole perturbation of Zeeman levels is reflected in
the corresponding deviation from the ‘standard’ relaxation curves. We found that
corrections are needed as soon as the Zeeman energy Ay, H, is only a few times
greater than the quadrupole coupling hvg. In this case only one jteration is usually
sufficient in the iterative determination of T)(«,b,¢). Finally, if we allow for the
frequency dependence of T;, we have achieved the above-mentioned case where all
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the transition probabilities are unkrown and one has to measure relaxation on all the
lines of the spectrum.

For the analysis of multiexponential relaxation to be valid, it is of course imperat-
ive to have well defined initial conditions, as they also directly determine the form of
relaxation {see {(Al12) in appendix A). The choice of excitation discussed in this paper
corresponds to the standard T; pulse sequence w—i—= /2-r—x where only a single
line is excited by the pulse (sequence) which is very short on the time scale defined
by the fastest-relaxing exponential in the relaxation.

Finally, as regards the numerical analysis needed in the definition of relaxation
curves, our choice of Hamiltonian (2) ensures that the arithmetic is real, while the
matrix formulation of the procedure given in appendix A allows its easy conversion
to a computer program. For example, in the course of this work ‘Mathematica’
programming package has been used, in which all the formulae we use have almost
direct equivalents in the program (up to the syntax of the language). The same
‘Mathematica’ program was used to obtain the exact solutions (j.e. solutions given in
rational numbers) for the ‘standard’ curves, as those given in table 1, as well as the
‘ordinary’ numerical results, as those given in table 2.

Appendix A

We suppose that the spin—spin interactions ensure that the population of energy
levels of each spin can be treated statistically. The time dependence of the average
population »; of the ith energy level is then described by the linear rate equation

N
dn;/dt =S (Wyn; - Wyn)  i=1,2,...,N =21 +1 (Al)

i=1

where W, is the probability of transition from level j to level ¢, and the prime on
>~ denotes the absence of 7 = j terms. For convenience, (Al) can be cast in the
(obvious) matrix notation:

dn/dt = Un (A2)
where
W, forig g
U"'={-ij'kwh. fdriij‘. (A3)
As the rate equation (Al) respects the normalization condition
N
Sony=1 (Ad)

the variables »; are not independent. As a convenient set of independent variables
we choose the difference of populations of neighbouring energy levels

An;=n;—ny, 1=1,2,..., N—-1=2] (AS)
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which is directly proportional to the NMR signal from the corresponding transition

(14 1,7). In order to transform (A2) to these new variables, we define a convenient
transformation matrix D [14]:

D;; = {5.'_5 =815 forig N—1 )
’ 1 fori=N

where &;; is the Kronecker delta. Applying the D matrix to (A2) and using the
normalization condition (A4) we obtain:

dAn/dt = —AAn + b (A7)
where for 7,7 =1,2,.... N—-1=2],
— A;; =(DUD™Y),; (A‘S)

and
b; = (DUD™ ), = N E[(W - W) - (Wige = Wil (A9)

(From definitions (A3) and (A6) we can show that the last row of the DUD ™" matrix
is equal to zero: (DUD™!),; = 0, for i € NV.) From (A7) and (A9) we see that the
equilibrium occupation difference,

An(co) = A~ b (A10)

is proportional to the asymmetry of the transition probabilities. The approach to the
equilibrium is governed by the linear homogeneous matrix equation

- d[An(t) — An(c0)]/dt = —A[An(t) — An(oc)]. (All)
The solution of (A11) can be written as

Any(t) = Any(co) + Y _ Ci; exp(—A;1)C; t[An(0) = Any(co)] (Al12)

J.k

where C is the matrix made ©of the eigenvectors of the matrix A; the ith column of the
matrix C is an eigenvector of the matrix A which corresponds to the eigenvalue X;.
The expression in the brackets on the right-hand side of the equation is determined
by the initial conditions. Note that (A3, A6, A8, A12) define a procedure which can
be directly converted to a computer program. Note that the transition probabilities
contain an unknown prefactor 7} %, and the time variable has to be changed to t/T,
in order to leave only the fixed numbcrs in the procedure.
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