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J. Phys.: Condens. Matter 4 (1992) 5811-5824. Printed in the UK 

Magnetic nuclear spin-lattice relaxation in NMR of 
orthorhombic crystals in the presence of strong quadrupole 
coupling 

Mladen HorvatiC 
Institute of Physics of the University of Zagreb, BijeniEka 46, PO Box 304, 41001 Zagreb, 
Croatia 

Received 6 February 1992, in final form 20 March 1992 

Abstract. A review is given of Some NMR techniques developed in experiments on 
high-temperature superconductors, Multiexponential relaxation which appears in the TI 
measurements when NMR lines are split by quadrupole interactions is discussed for the 
case of magnetic relaxation. The change in the form of relaxalion is followed as the 
quadrupole Hamiltonian starts to perturb the othenvise pure Zeeman spin slates (defined 
by I z ) .  Orthorhombic symmetry is assumed in the analysis, which is shown to greatly 
simplify the data reduction to oblain the magnetic hyperfine shift, the electric held 
gradient and the nuclear spin-laltice relaxation rate. 

1: Introduction 

Nuclear spins larger than 112 have non-zero electric quadrupole moments which inter- 
act with the electric field gradient (EFG) if it is present at the position of the nucleus. 
By NMR one can measure the EFG tensor [I] and use it as important information about 
the system under investigation. However, the technique of the NMR data reduction 
to obtain the magnetic hyperfine shift (MHS) (which is called the Knight shift in met- 
als), the EFG and the nuclear spin-lattice relaxation rate (NSLRR) can be considerably 
more difficult than in the case of spin 1/2 or zero EFG. Recent examples are given by 
a large number of NMR results on high-tem,perature superconductors (HTSC) [Z] and 
notably in YBCO compound for copper 63*65Cu spin 312 nuclei [ 3 4 ]  and oxygen "0 
spin 5fZ nuclei j7-91. Fortunately, in orthorhombic crystals, for NMR sites having local 
symmetry "2, the principal axes of the MHS and EFG tensors have to be parallel to 
the crystal axes, which greatly simplifies the NMR measurements and data analysis. In 
this paper we focus on these 'technical details' (usually taken into account implicitly in 
most of the NMR publications) underlying the NMR work in orthorhombic compounds 
in the presence of strong quadrupole coupling to the EFG [lo]. The central point is 
the detailed discussion (given in section 3) of the multiexponential relaxation in the 
NSLRR measurements, which has proved to be of prime importance in experimental 
work and can possibly lead to serious systematic errors. The basis of thc analysis 
is the orthorhombic symmetry of the samples and the local symmetry "2, and in 
section 2 we will also explore to some extent the simplifications and technical details 
based on this symmetry, which have been developed in the course of investigation of 
63Cu and 170 NMR in m c .  

0953-8984/92/265811+14$04.50 @ 1992 IOP Publishing Ltd 5811 
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2. Magnetic hyperfine shift and electric field gradient 

Both the EFG and the MHS temors are symmetric and in orthorhombic crystals one 
would naturally like to have the principal axes of these tensors simply parallel to the 
crystal axes. However, it turns out that, in general, the local symmetry at a particular 
NMR site in an orthorhombic crystal may not be high enough to ensure this parallelism 
automatically. One sufficient condition is the local symmetry mm2, i.e. it is enough 
to find at least two of the three crystal planes (a-6, b-c and e a )  passing through 
the position of the nucleus to be the planes of mirror symmetry. By symmetry, for 
each of these two planes there is a principal axis that has to be perpendicular to 
the plane, which is enough to lix the coordinate system of principal axes parallel to 
the crystal axes. The given criterion is very simple and it is easy to verify that it is 
fulfilled e.g. for all the nuclei in YBCO HTSC. This is a fundamental simplification, as 
in general the number of unknown parameters is reduced by two times three Euler 
angles (which would otherwise be necessary to specify the position of the coordinate 
system of principal axes) corresponding to the MHS and EFG tensors. In this case, for 
the Hamiltonian % which determines the energy levels of nuclear spins and thus the 
positions of the NMR lines, we can simply use the coordinate system of crystal axes 
in which all tensors are diagonal: 

= ‘ h e m a n  + x ~ u a d r u p o ~ e  

x z e m a n  = A=a.b.c - h ~ n ( l +  J{AA)HO.,~A (1) 

%Quadrupole = hwzz [31: - + 1) +%(I: t I ! ) / z ]  /6 

where qz = (vze - u Y , ) / v z z ,  I, y. z correspond to any combination of the a, 
b, e axes with no restrictions, and otherwise standard notation [l] has been used. 
We recall here that frequencies vAA are proportional to the EFG \LA : wAA = 
3eQ/ [2h1(21  - l)]VAA [l]. According to Poisson’s equation, the EFG tensor has 
zero trace and in the quadrupole Hamiltonian it is therefore represented by only hvo 
parameters wzz and 11,. 

Altogether, the Hamiltonian contains as many as five unknown parameters which 
fully determine the MHS and EFG tensors, and it is explicitly dependent on the orien- 
tation of the external magnetic field H,,. The logical choice is to orient Ho parallel 
to one of the crystal axes and in the following we will take this axis to be z-axis, i.e. 
H ,  = Hok.  In the Hamiltonian (1) the Zeeman part is simplified, 

~ = - ~ T , , ( ~ + I ~ , , ) H J ,  t h v , ,  [ 3 1 2 - 1 ( 1 + 1 ) + 1 , ( I : + 1 1 ) / 2 ] / 6  (2) 

and only three parameters IC,,, wxz and 71, are left over. These can be determined 
from only three lines of the corresponding NMR spectrum so only one complete 
spectrum (Le. for one orientation of the sample) for spin 2 3/2 is required to 
provide the complete EFG tensor (plus one component of MHS). This fact proved to 
be fundamental in the NMR investigation of YBa,Cu,O, HTsc,  where the symmetry 
of the EFG tensor has been used as the decisive argument to solve the long-lasting 
controversy in the site assignment of two copper lines [3,4]. Although the symmetry of 
the MHS tensor can be used for the same purpose, in principle we need measurements 
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Figure 1. Line pasitions as a function of the asp- 
metry parameter in the NMR of a spin I = 312, in 
the presence of strong quadrupole coupling, when 
Ho h applied parallel la any of the principal axes 
Of lhe EFG tensor. 

for three different orientations of the sample for its determination while the  use of 
EFG is much simpler as only one spectrum is needed. 

Figure 1 shows an example (corresponding to copper resonance in copper-oxide 
mc) where the line positions of spin 3R are obtained from the exact solution of 
Hamiltonian (1) for Ho parallel to any of the principal axes X, Y and Zt. In 
order to emphasize the dependence of the line positions on the symmetry of the 
EFG tensor, in figure 1 the MHs has been absorbed in the 'total' magnetic field, 
H = (1 + K,,)H,. The NQR frequency vNQR = vzz ( l  + &/3)'/' has been kept 
constant, which corresponds to the actual experimental situation with copper NMR 
in YBa,Cu,O,, where this parameter had been known from pure NQR before the 
determination of the complete EFG tensor. Using the symmetry propetties of the 
Hamiltonian (1) under the exchange of the principal axes, it can be shown that in 
the representation of figure 1 the line positions (as a function of 7 and orientation) 
are given by continuous smooth lines, regardless of the spin value. For Ho parallel 
to the Z-axis and 1) = 0, the NMR lines are equally spaced out at intervals equal to 
vQ and with the central line [for half-integer spins, transition ( l a  -ID)] at exactly 
ynH/2?r, Le. nor shifted by the quadrupole coupling. For all other cases, as we 
move upwards along the vertical axis of figure 1, the intervals between the lines 
decrease monotonically and they are no longer equal; the higher-frequency interval is 
somewhat smaller than its lower-frequency neighbour. The central line is shifted by 
the quadrupole coupling to a higher frequency. From such dependence it is evident 
that the EFG parameters are uniquely determined by the line positions. Tb be more 
precise, one can determine vlI (up to its sign) and q 2 ,  and from these calculate vsc 
and vyy. However, for two crystal axes perpendicular to the z-axis one cannot tell 
which one is 2- and which one is y-axis. 

In the following we discuss in more detail our choice of Ho as being parallel to one 
of the crystal axes, which underlies our analysis of the NMR spectrum. Experimentally 
there are two possible ways to ensure this condition: one is to take a single crystal 
and orient it appropriately; e.g. copper oxide HTSC single crystals are platelets with 
the e-axis pcrpendicular to the platelet. Another possibility is to make a so-called 

t The convention luzzl < 1ut.t.l < luzzl = YQ restricting 9z = 9 to the intewal 0 < 9 < 1 is 
customary. but not necessary. When this convention is assumed we will use capital letten X, Y and Z. 
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‘oriented powder’ where all grains in the powder are small single crystals oriented 
with e.g. their c-axes parallel to the external field, while the orientation of two 
perpendicular axes a and b is random. It turns out that for most m c  the anisotropy 
of magnetic susceptibility at T > T, favours alignment of the c-axis parallel to the 
external magnetic field and it is relatively easy to perform the orientation in sifu in 
the H, field. For H ,  parallel to the oriented axis (which is automatically obtained 
by orientation in silu), the same Hamiltonian describes each grain and the whole 
sample is indistinguishable from a true single crystal, as far as the NMR is concerned. 
The resulting spectrum consists of lines, and according to the previous discussion it 
is sufficient for the full determination of the EFG. 

Note that as soon as we put H, perpendicular to the oriented axis of an oriented 
powder (which we can call a ‘two-dimensional powder’), or in the case of non-oriented 
(‘three dimensional’) powder, the spectrum will correspond to the directional average 
over all possible directions of H ,  with respect to the crystal axes of each grain in the 
sample. Instead of lines, one obtains the,distribution, and instead of line positions, 
in the determination of parameters one has to refer to Van Hove’ singularities in the 
spectrum. In this case the determination of parameters (if possible at all) is more 
difficult and less reliable. IC is clear that the ‘two-dimensional’ (orienred) powder is 
preferred to the ‘three-dimensional’ powder as, due to lower dimension, van Hove 
singularities are sharper and the number of parameters describing the spectrum is 
smaller. 

3. Nuclear spin-lattice relaxation 

The theory of the multiexponential relaxation of spin I > 1/2 induced by the pres- 
ence of quadrupole coupling was treated previously by Andrew and ”.tall [ l l ]  and 
Narath [12]. In recent measurements of copper and oxygen NSLRR in HTSC, this the- 
ory has been applied to obtain the explicit expressions for the relaxation of different 
lines of spin 3R and Si2  spectra [4, 81. These expressions correspond to relaxation 
of magnetic origin in the case when Zeeman spin states (i.e. the eigenstates of I,) 
are only negligibly perturbcd by the quadrupole coupling. The latter condition is 
fulfilled when the asymmetry of the quadrupole coupling with respect to the direction 
of magnetic field (z-axis) is much smaller than the Zeeman interaction: 

Condition (3) ensures that the off-diagonal elements in Hamiltonian (2) be much 
smaller than the diagonal ones. ?I.ivially, this can be ensured when the quadrupole 
coupling uzi is small, which is, e.g. the case of I7O NMR in HTSC. This can also be 
true for strong quadrupole coupling and for the direction of the symmetry axis of 
the EFG tensor (for qz l), which is just the case of copper in CuO, planes of 
HTsC, when Ho is parallel to the c-axis. For the same nucleus and H ,  perpendicular 
to the c-axis, condition (3) is not fulfilled and more complicated analysis is needed 
in the determination of the relaxation rate. An analysis of this type appeared only 
very recently in connection with the low-field copper NMR [6] ,  however, even in the 
high-field NMR these effects cannot be neglected. Similar analysis has also been given 
by Chepin and Ross [13] in the general treatment of pure NQR, i.e. in the m e  of zero 



Magnetic nuclear spin-lattice relaxation in NMR 5815 

magnetic field. In the following, together with the most general treatment of multi- 
exponential relaxation, we present a detailed discussion of conditions corresponding 
to each type of fit, and cover all the cases from high to low magnetic field. 

For the sake of completeness and generality, in appendix A we give the explicit 
expression for the time development of the energy level populations n;, given the 
arbitrary probability of transition M’;j from level j to level i, and arbitrary initial 
conditions. The assumption underlying this approach is that the spin-spin interactions 
ensure that the population of energy levels of each nuclear spin can be treated 
statistically and described by the linear rate equation. Note that the solution of the 
linear rate equation given in appendk A is quite general regardless of the origin 
and size of the transition probabilities. The only NMR-SpeCifIC detail in this solution 
is the standard choice of the variable Ill, 121 which is taken to be the difference 
of populations of neighbouring energy levels An; = n; - nit], as this quantity is 
directly proportional to the  NMR signal. The transformation to the Ani variables 
is given in matrix notation [14]-which is a great advantage, enabling direct and 
simple conversion of the procedure into a computer program capable of handling any 
particular case. Note that in [6, 131 the transformation has been avoided and the rate 
equation solved directly, leading to the appearance of a redundant eigenvector in the 
solution. 

As the next step we discuss the initial condition corresponding to a particular 
experimental procedure. We consider the standard n-t-r /2-r-r  pulse sequence for 
the NsLRR measurements, where the excitation is performed by one short pulse at 
t = 0 ,  exciting e.g. the (m  + 1, m) line. This pulse is supposed to be the only source 
of variation of [An , ( t  = 0)  - An,(t  = m)], i.e. it has to be short enough for the 
relaxation during the pulse to be negligible. (Note that this might not be true for the 
excitation by a pulse sequence.) The spectral width of the excitation pulse has to be 
wide enough to cover the line completely, but also narrow enough to avoid ‘touching’ 
neighbouring lines. Under these conditions one has a well defined initial condition: 

b k ( 0 )  - n,(m)l $(6k , ,”  - 6,,,+, 1 

Le. 

(4) 
1 [ A n d o )  - An,(” 0: &,”, - 5(&,m+l + 6 k , m - l )  

where 6,, is the Kronecker delta (i.e. 6km = 0 for k # m and 6,, = 1 for 
k = m). Note that a similar expression can also cover the case in which the NMR 
l i e  corresponds to a transition between any two levels, and not only neighbouring 
ones. 

The final fundamental ingredient which remaim to be specified in our description 
of relaxation is of course the transition probability Wit. We recall that from the first- 
order perturbation for the equation of motion of the density matrix [I], the probability 
of transition between localized energy levels Ik) + Im), for a perturbation that is 
spread in frequency, is given by the wmk [Umk = (E, - Ek)/h] Fourier component 
of the interaction Hamiltonian correlation function: 
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In this paper we discuss only the relaxation of ‘magnetic origin’, i.e. the interaction 
Hamiltonian to be inserted in (5) is 

‘HI = -hy,Z * h( t )  (6) 

where h(l) is the fluctuating part of the local magnetic field (with zero time average). 
From (5, 6) it is clear that 

u A e ( w )  = 72 ltm dteiWLh,(l)hB(O) A , B  = z ,y ,z ,+ , -  (7) 
J-W 

will be the fundamental quantities in the transition probabilities. As a reference, we 
start with the spin If2 case with a single transition and no quadrupole coupling. Even 
in this case we can apply the procedure of appendix A to obtain single-exponential 
relaxation with time constant TI given by 

T-YWa) = u-+(-wa) + U+-(%) 
= i {I~,,cwa) + ~ y ~ ( w a ) l  - i [~z , (wa)  - ~ v r ( w o ) l ~  (9) 

where wa is the NMR resonance frequency. (Note some relevant symmetry properties 
of the correlation function (7): for A ,  B = I, y, z, uAB - uBA is imaginary and 
odd, while uAA and uAB + uBA are real and even functions of w.) As the next step 
we consider the arbitrary spin in the presence of a weak quadrupole coupling which 
leaves the Zeeman spin states (almost) unperturbed. In this case only 1+17, and 
I- I,. combinations will provide non-zero contribution in the transition probabilities, 

W,, = i T-’(wmk)Il(mlr+lk)l? 4- I(mlr-I!4IZ1 (10) 

where T i ’ ( w )  is defined by (9). For weak quadrupole coupling, all transition fre- 
quencies are rather close, so that we can neglect the frequency dependence of TI, 

and in the transition probabilities (10) only one parameter (namely Tl) is leftover- 
the same as defined in the ‘reference’ spin ln case. Using (lo), (11) and the initial 
condition (4) in the procedure given in appendix A, it is a simple matter to obtain 
the time dependence in the relaxation experiment for an arbitrary spin. The spin 
3/2 and 5f2 curves obtained in this way (which are much used in the investigation 
of b 3 C ~  and I’o NMR in HTSC) are given in table 1. Figure 2 shows an example 
of the fit to the spin 5/2 curve, corresponding to the relaxation of plane oxygen in 
YBcO HTSC [9]. Note that the same analysis and the same curves are valid even for 
strong coupling with only weak asymmetry (3), under the condition that TT1(w) is 
frequency-independent in the frequency range where the NMR lines are observed. A0 
example is provided by the relaxation of plane copper in -CO, when H, is parallel to 
the c-axis. Frequency independence of uAB(w) correlation functions (7) is actually 
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tll, 
Figure 2. Theoretical fit (table I) and thc relaxation data used for the determination 
of TI of the plane oxygen in YBCO, measured on (Y2, In) low-frequency satellite in 
Ihe Ho 11 X-axis mnfiguralion, at 100 K [9]. The same data are shown in the standard 
linear-log plot and in lhe experimentally more appropriate log-linear plot. 

expected to be fulfilled in most cases, as the correlation times of the magnetic field 
fluctuations are very short on the time scale defined by the NMR frequency (p 194 of 
[I]). Note that here we speak of the frequency independence of TI for given external 
magnetic field H,, but at the same time TI may very well depend on H ,  reflecting 
the influence of magnetic field on the system; the two variables, ie. magnetic field 
and frequency, have here different meanings which must not be confused. 

So far, we have only repeated the analysis of Andrew and Tbnstall Ill] and Narath 
[12] in a way appropriate for the extension to the most general case. Now, if the 
Zeeman states are significantly mixed by the asymmetry of quadrupole coupling, in 
principle all the combinations I, I, will appear when the interaction Hamiltonian 
(6) is inserted in the expression for the transition probability (5). 'RI simplify the 
expression, we consider only the case where H, is parallel to one of the principal 
axes. Hamiltonian (2) can then be used for the description, and the only off-diagonal 
elements in the Hamiltonian are generated by I: and I 2  operators. Consequently, 
only Zeeman states with A M  = rt2 will be mixed together. (We also remark that in 
this case the Hamiltonian (2) and therefore all the spin states and all relevant matrix 
elements are real, which simplifies numerical treatment.) It is easy to see that in the 
transition probability only the I ,  I, or I ,  I, combinations give zero contribution and 
the complete expression is given by: 

w,, = ${[u,, t uvvI +il%, - uy*lJ f(m1UW2 

+ f {[wrs + uyyl -i[uSy - u,=1} +lI-W 
+ h.z - ~ , , l ( ~ l ~ t I W l ~ + I m )  + ~ z z ( ~ l ~ * l w z  (12) 

where all the correlation functions uAB are to be taken at the frequency of the 
transition w = wmk, states Im) and lk) now refer to real spin states obtained from 
the solution of the Hamiltonian (2) and the matrix elements are explicitly taken to be 
real. In  the discussion of this result we will suppose that the cross-correlation term 
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[uIy - uyz] is zero (p 207 of [l]) and that all the correlation functions are frequency 
independent. This will reduce the number of parameters appearing in (12) to three 
(%,, u y g  and U,,), which can be converted to the above discussed relaxation rates 
(9) measured in the three directions of the principal axes, Le. 

w,, = T,(z)-' [$((mlI+llc)2 + ( m I L l W  
+ {[T~(Y)-' -Ti(x)-'I/Ti(z)-'} (mlI+lk)(klZ+lm) 
+ {[T~(Y)-' + Ti(~)-l l /Ti(z)-l  - 1) (mlI,lk)2]. (13) 

Formally, (13) puts us in a rather unfavourable situation where the complete relaxa- 
tion rate tensor has to be known in advance in order to find out the exact form of 
the relaxation curve necessaiy for its determination. The only way out is the iterative 
self-consistent determination of TI(?, y, 2). Comparing (13) to (10) we notice that 
the new terms are linear (I+It) or quadratic (111,) in the quadrupole perturbation 
(or of a higher order). In the first approximation we can therefore rely on the above 
discussed case of pure Zeeman states and the known 'standard' relaxation curves (see 
table 1) to provide the first estimate of the anisotropies Tl(x,y)-l/Tl(z)-l which 
are needed in expression (13). We then start an iterative procedure where previously 
approximated values of Tl are used in the part of expression (13) in braces in order 
to define new transition probabilities and new relaxation curves which are then used 
to obtain the subsequent approximation of T,-until the values converge. 

Table 1. Magnetic relaxation in TI measurements, when quadrupole coupling splits the 
NMR lines bul leaves the k m a n  spin Slates ( a h " )  unperlurbd. 

Spin ltansition F(z) = F(f/'J'j); F(O) = 1 
.. ,,,,, , ,,."--.,-,~,,.,,,,,",,*,.~, ,,,,, . ~~ 

5R ( -1 /2 ,+1 /2 )  he-" + $-e. + z i - l 5 =  
&-= + .Le-3s + Lc--6= + B e - 1 O s  + ZEe-15r (F3/2,F1/2)  I O  56 56 

(F5/2,F3/2) &e-* + Pe-3= I& + ?e-6* + ?e-'.= + l e - l 5 =  11 

3R (-1/2,+1/'2) he-" + me-,= 
(13 /2 ,71 /2 )  & e - = +  "e-%':+ 10 L e - , =  10 

In the following, as an example, we discuss the results of Cu resonance in CuO, 
planes of YBCO HTSC. The situation is considerably simpler herc bccause of the 
tetragonal symmetry. This means that for H, 11 e-axis the simpler analysis based 
on (10) and the curves for spin 3/2 given in table 1 are valid exactly, provided 
that Tl is not frequency dependent. The general analysis applies only to the de- 
termination of Tl(a) = T,(6), i.e. to the determination of the NSLRR anisotropy 
R = Tl(u,b)-l/Tl(c)-i.  For the U or 6 direction, the parameters in the Hamilto- 
nian (2) are vz = -vQ/?- and 17: = f3, and the corresponding transition probabili- 
ties are given by 

U", = Tl(a,6)-' {$((mlIt[k)' t (nzlI-lk)') 

i ( V R -  i ) ( m i I + i w w + i m )  + w w ( w i k ) z } .  (14) 

This expression has been used to show how the relaxation curvc is modified by the 
quadrupole perturbation of spin states; in table 2 the explicit expressions are given 
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which correspond to the transition (3/2, ID) of plane copper in YBa,Cu,O, and 
various values of the magnetic field used in the investigations [S, 6, 91. It is obvious 
that for y H ,  5 uQ one obtains substantial changes in the relaxation curve, and even 
at high fields, yH, > vQ, this effect cannot be neglected. RI get a feeling how 
the deviation develops as we lower the magnetic field, one can compare the true 
relaxation curve and the ‘standard curve’ (Le. the one corresponding to Ho -t 00) 

which is time scaled in order to minimize the difference between these two curves. In 
this case the time scaling factor will measure the error due to using the standard curve 
instead of the real one. An example of these corrections is given in table 3 and in 
figure 3, with the minimization of the absolute value of the maximal difference as the 
matching criterion. It is clear that, while being rather small for the central line (In, 
-l/Z), these corrections are quite important for the satellite lines. Unfortunately, 
even for corrections of, say, 20%, the experiment will be completely unable to detect 
the change in the shape of the relaxation curve; figure 3 shows that by using time 
scaling the corresponding deviations can be reduced to l c s  than 0.7% of the total 
variation of the signal, which is usually completely covered by noise. 

-0.006 Y .  
Figure 3. Time dependence of the difference 
AF between the real cuwe and the time-scaled 
‘standard‘ relaxation curve. mrresponding lo the 
HO = 5.75 T case of fable 3 for the (U) low, (b) 
central and (c) high frequency lines. All CUIVS are 
normalized to F ( t  = 0) = 1. 

Note that in principle the above time-scaling procedure can be used to correct 
the data obtained by the formal use of the standard curves given in table 1. However, 
depending on the fit of the experimental data and the exact matching criterion used 
in the scaling, it is easy to introduce systematic erron in this correction. In fits it is 
always preferable to use the exact curve directly without further corrections. 

We return to the discussion of the frequency independence of the relaxation rate 
(9), which enables us to define the single parameter Tl describing multiexponential 
relaxation. We already mentioned that deviations from frequency independence are 
not likely to be encountered. Nevertheless, they are discussed here as the natural 
generalization of the previous analysis leading to the most general case of ‘arbitrary’ 
transition probabilities (which include quadrupole relaxation). The main point is 
that one is able to detect experimentally the possible deviations from the frequency- 
independent TI (and/or from magnetic relaxation); first we look for the possible 
differences between the theoretical and experimental form of the relaxation. Although 
this depends on the noise in the experiment, we already saw in figure 3 that there is a 
fair chance that the possible change in the form of the curve can be absorbed in the 
time-scaling factor and consequently in the false Tl value. It is therefore necessary 
to check whether the same relaxation rate is obtained in measurements on different 
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Table 2. Magnetic Seld dependence of lhe (coelllcients defining) remalion cuwes 
F ( t / T l )  = x:=, o , e x p ( - b , l / T l )  corresponding 10 the plane copper resonance in 
YBa2Cu30, for Ho perpendicular to the symmeily axis, lransilion (3n. lR), UQ = 
31.48 MHz and NSlRR anisotropy R = 3.73 [5]. The second column contains lhe 
reference in which lhe given value of Ho has k e n  used in ihe mcasuremenls. 

HdT) Ret a1 b l  ba 53 63 
, , I/,,,.rj~-.;- 

0.44 [6] 0.00403 8.02 0.965 1195 ' O.O?j? 0.825 
0.88 [6] 0.0010 7.52 0.898 2.33 0.10.1 0.869 
2.2 - 0.069 6.21 0.747 3.13 0.184 0.953 
5.75 191 0.264 5.98 0.586 3.07 0.151 0.991 
8.1 [SI 0.304 5.99 0.559 3.04 0.137 0.995 
00 0.4 6 0.5 3 0.1 1~ 

NMR l i e s  of the same spectrum [3, 81. Note that 'looking' at each line, one finds its 
relaxation curve predominantly determined by the transition probability corresponding 
to this l i e .  (This plausible statement can easily be supported numerically if we 
look at the changes in the relaxation curve when different transition probabilities 
are forced 'by hand' to deviate from the standard case of (IO).) Any frequency 
dependence will thus be directly observable. Moreover, once the relaxation has been 
measured for all the lines, it is in principle possible to deduce exactly all the values 
T,(wmk)  corresponding to each line, i.e. in this way one can directly measure the 
frequency dependence of NSLRR. The determination will be iterative, similar to the 
above discussed determination of TI using (13), where once again the starting values 
will be taken from the standard analysis. Of course, if (10) is valid for the chosen 
crystal axis, this procedure can be carried out independently for this direction. In 
principle, even the most general case based on (12) is solvable; however, this demands 
the simultaneous knowledge of relaxation for all the lines, for all the crystal axes. 
In the most general case we will actually determine all the transition probabilities 
irrespective of their values. Thus, even the restriction to magnetic relaxation (6) is no 
longer necessary. However, it is clear that this implies a rather demanding quantity 
of experimental information. 

Table 3. Time-sealing coefficienls k which minimize lhe difference A F  = 
[ F ( H o , t / T ] )  - F ( H a  = - , k t j T ~ ) ]  between the M I  c u m  (see Uble 2) and lhe 
lime-scaled 'standard' relaxation cuwe (see table 1 for spin 3p). The coefficients k 
measure lhe e m r  in lhe determinalion of TI when 'standard' curve is used instead of 
[he real one. 

HdT)  5.75 8.1 

Reference PI Is1 
Low freq. salellile 1.198 1.133 
Central line 0.962 0.981 
High freq. satellile 0.868~ 0.901 

, , .  , ,I".,. . , ,  -~ ~ 

As regards the most general case, we recall that when different isotopes of the 
same nucleus are available, as e.g. for copper 63Cu and W u ,  the measurement of 
the ratio of NSLRR of two different isotopes can be compared to the ratio of squared 
nuclear gyromagnetic ratios or quadrupole moments in order to deduce the origin of 
nuclear relaxation, as has been done, e.g. in (61. If this is not possible, (e.g. in the case 



Magnetic nuclear spin-latiice relaxation in NMR 5821 

of “0 NMR) one should rely on the analysis of the relaxation curves for different lines 
of the same spectrum, as in the case where the possibility of frequency-dependent TI 
has been discussed. 

A Conclusion 

For nuclear spins greater than In the quadrupole coupling splits the NMR tine and 
makes the determination of characteristic tensors, i.e. the MHS, EFG and NSLRR ten- 
sors, more difficult. Orthorhombic symmetry and the local symmetry mm2 can 
considerably simplify this determination; in the coordinate system of crystal axes the 
tensors are then diagonal and we show that the choice of orientation with the ex- 
ternal field Ho parallel to one of the crystal axes is particularly advantageous in 
the measuremen&. In this case only one complete spectrum is needed for the full 
determination of the EFG temor. 

In the measurements of NSLRR (T;’) the existence of several NMR lines in the 
spectrum of one nucleus will imply multiexponential relaxation. In appendix A a 
general procedure is given which predicts the form of relaxation for any set of tran- 
sition probabilities and initial conditions. In fact, one would like to have the ‘inverse 
procedure’ which would calculate the transition probabilities from the experimentally 
determined form of relaxation. In principle, if the relaxation form is known for all 
the NMR lines, one can determine the transition probabilities using the procedure as 
given in appendix A in an iteration, until the self-consistent solution is found. We are 
primarily interested in the case where only one parameter determines the transition 
probabilities: for the relaxation of magnetic origin this parameter is defined in the 
trivial case of spin 1R where the relaxation is single-exponential with the time constant 
TI measuring the transvers fluctuations of magnetic field (at the NMR frequency) a c  
cording to (9) and (7). For spins greater than ln the same parameter is still the only 
one which determines the transition probabilities according to (lo), if the Zeeman 
spin states are left (almost) unperturbed by the quadrupole coupling, and if Tl does 
not depend on the frequency of the transition. In this case the simple application of 
the procedure given in appendix A gives ‘standard’ multiexponential relaxation curves 
(which depend only on the spin value and on the chosen transition-examples are 
given in table 1) and one measurement of relaxation (on any one of the lines) is 
sufficient for the determination of TI for the chosen orientation of H,. 

However, if the Zeeman spin states are significantly mixed by the quadrupole 
coupling, while the frequency independence of TI parameters (9), (7) is still valid, 
transition probabilities are defined by three parameters which can be reduced to 
the definitions of TI (9), (7) for three directions of crystal axes a, b and c. For 
the determination of these, one needs one relaxation measurement for each of the 
three orientations of the sample. There are no more ‘standard’ relaxation curves, 
as they are specific to each case and have to be determined self-consistently for all 
three orientations (e.g. see table 2). In this paper we were especially interested in 
considering how a small quadrupole perturbation of Zeeman levels is reflected in 
the corresponding deviation from the ‘standard’ relaxation curves. We found that 
corrections are needed as soon as the Zeeman energy hy,Ho is only a few times 
greater than the quadrupole coupling /xuQ. In this case only one iteration is usually 
sufficient in the iterative determination of  T , ( a , b , c ) .  Finally, if we allow for the 
frequency dependence of Tl, we have achieved the above-mentioned case where all 
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the transition probabilities are  unknown and one has to measure relaxation on all the 
lines of the spectrum. 

For the analysis of multiexponential relaxation to be valid, it is of course imperat- 
ive to have well defined initial conditions, as they also directly determine the form of 
relaxation (see (A12) in appendix A). The choice of excitation discussed in this paper 
corresponds to the standard TI pulse sequence r-t-7r/2-r-r where only a single 
vie is excited by the pulse (sequence) which is very short on the time scale defined 
by the fastest-relaxing exponential in the relaxation. 

Finally, as regards the numerical analysis needed in the definition of relaxation 
curves, our choice of Hamiltonian (2) ensures that the arithmetic is real, while the 
matrix formulation of the procedure given in appendix A allows its easy conversion 
to a computer program. For example, in the course of this work ‘Mathematica’ 
programming package has been used, in which all the formulae we use have almost 
direct equivalents in the program (up to the syntax of the language). The same 
‘Mathematica’ program was used to obtain the exact solutions (i.e. solutions given in 
rational numbers) for the ‘standard’ cuwes, as those given in table 1, as well as the 
‘ordinary’ numerical results, as thost given in table 2. 

Appendix A 

W e  suppose that the spin-spin interactions ensure that the population of energy 
levels of each spin can be treated statistically. The time dependence of the average 
population n i  of the ith energy level is then described by the linear rate equation 

N 
dn,/dt  = C’(IVijnj - tVjin;) i = 1,2, . , N = 21 + 1 (Al) 

j=1 

where Wij  is the probability of transition from level j to level i, and the prime on 
denotes the absence of i = j terms. For convenience, (Al) can be cast in the 

(obvious) matrix notation: 

dn /d t  = U n  

where 

As the rate equation (Al) respects the normalization condition 

N 
E n i = ]  
i = l  

the variables n i  are not independent. As a convenient set of independent variables 
we choose the difference of populations of neighbouring energy levels 

N - l = 2 1  (W A n .  = n .  , - n. ,+, i = 1 , 2  )..., 
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which is directly proportional to the NMR signal from the corresponding transition 
(i + 1,;). In order to transform (A2) to these new variables, we define a convenient 
transformation matrix D [14]: 

( 4  

where 6;j is the Kronecker delta. Applying the D matrix to (A2) and using the 
normalization condition (A4) we obtain: 

dAn/dt = -AAn + b (A') 

where for i , j  = 1,2,.. . , N -  1 = 21, 

and 

(From definitions (A3) and (A6) we can show that the last row of the DUD-' matrix 
is equal to zero: (DUD-'),, = 0, for i < N.) From (A7) and (A9) we see that the 
equilibrium occupation difference, 

An(m) = A-'b (*lo) 

is proportional to the asymmetry of the transition probabilities. The approach to the 
equilibrium is governed by the h e a r  homogeneous matrix equation 

d[An(t) - An(m)]/dt = -A[An(t) - An(m)]. (All) 

The solution of (AI 1) can be written as 

A n , ( t )  = Ani(m) + c C i , j  exp(-Xjt)C;LIAnk(0) - Anb(co)) ('412) 
j,k 

where C is the matrix made of the eigenvectors of the matrix A; the ith column of the 
matrix C is an eigenvector of the matrix A which corresponds to the eigenvalue A,. 
The expression in the brackets on the right-hand side of the equation is determined 
by the initial conditions. Note that (A3, A6, AS, A12) define a procedure which can 
be directly converted to a computer program. Note that the transition probabilities 
contain an unknown prefactor T;', and the time variable has to be changed to t/T, 
in order to leave only the fixed numbers in the procedure. 
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